chronic pain

Medical Marijuana: a non-intoxicating pain-relieving solution to the opioid epidemic?

Virginia Thornley, M.D., Neurologist, Epileptologist

March 24, 2018

Introduction

Any news outlet you peruse is bound to have mention of the current opioid crisis looming on the horizon. Opioids are commonly prescribed as the last resort for patients with chronic pain who have failed conventional medications, interventional measures such as epidural injections or surgery, non-pharmacologic measures such as physical therapy and even Eastern techniques such as acupuncture. With tolerance a common problem and patients needing higher and higher dosages for pain control because of the properties of opioids, it is little wonder that chronic pain control is difficult to maintain.

The hot topic of debate in many states is the recognition of medical marijuana as a legitimate medication for chronic ailments. However, because of the stigma it has incurred being well-known for its psychoactive properties and widely seen in pop culture in movies with kingpins smoking it for recreation, the medicinal values are often overshadowed and lack of side effects in low doses is easily overlooked.

Not your stereotypical patient and not your direct referral

Patients and even physicians likely have a preconceived notion of who seeks medical marijuana. While chronic pain is top of the list, often times, it is discovered by the hard-working carpenter who discovered it online and found a small scientific article on non-pharmacologic treatments trying to come off sedating pain-relieving medications. It will be the former business owner who lived an enjoyable life being active dancing or the woman afflicted with an autoimmune disorder and has failed every medication under the sun. Many times patients come in not because they want to feel good but because it is their last resort and they’ve exhausted every treatment option known to mankind. They dislike the side effects of the strong painkillers such as opioids and just want the pain to stop and live a normal life. It is amazing how indirectly patients hear about the wonders of medical marijuana, it will usually be a neighbor who swears by it, or somebody’s friend who mentions it out of the blue.  Oftentimes, it is by word of mouth since the few physicians interested in recommending it are very reluctant to advertise with good reason.

IMG_2979_preview

 

Mechanisms of cannabidiol and tetrahydrocannabinol

Medical marijuana has been used since B.C. period for thousands of years as a medication. It was incorporated into the pharmacopeia of American medicine in the 1850’s until it was banned in the 1930’s. It regained popularity and notoriety as a recreational substance. However, more and more patients are turning towards this now alternative medication after years of frustration towards the ineffectiveness and adverse effects of conventional medications.  The endocannabinoid pathway is found inherently in the system and is responsible for the runner’s high that people get after a vigorous run or after exercising and gives the sense of well-being. The CB1 receptor is found most abundantly in the central nervous system which is likely why many neurological conditions are found to benefit from its use. The CB2 receptor is most commonly found in the immune system. As more research is pursued, there are CB receptors found diffusely throughout many organ systems.  Cannabidiol weakly interacts with the CB1 receptor. It takes at least 100 times cannabidiol to attain the same intoxication one gets with tetrahydrocannabinol, the substance which is more popular and found in the marijuana joints people smoke to obtain euphoria. THC at low concentrations is effective in treating many different medical conditions. It must be used in conjunction with CBD so that side effects are offset. Cannabidiol has no intoxication while low doses of THC does not give euphoria one associates with this drug. There is no tolerance.

Scientific evidence cannabidiol and tetrahydrocannabinol work in chronic pain and other medical diseases

In animal studies, it is well known to reduce seizures by inhibiting the excitation within the hippocampus of the brain where seizures are commonly propagated (http://www.pnas.org/content/early/2017/09/26/1711351114).There are many clinical trials in humans attesting its efficacy at controlling seizures effectively.  CB1 receptors appear to be increased in many neurological disorders which implies it is a compensatory mechanism for diseases. In Parkinson’s disease, there are increased CB1 receptors which may help with the reduced dopamine commonly found in Parkinson’s disease. 9tetrahydrocannabinol was found to lower intraocular pressure in glaucoma in rabbits (https://www.ncbi.nlm.nih.gov/pubmed/6329602). Sativex is a combination of THC:CBD which reduces spasms in patients with multiple sclerosis and has been available in Europe for several years now with very little side effects http://jnnp.bmj.com/content/87/9/944. There is extensive evidence in both animal and human models that it works in chronic pain (https://www.ncbi.nlm.nih.gov/pubmed/26830780). Many diseases are being evaluated for mechanisms on which CBD and THC may exert its effects. It has been found to have anti-oxidant and anti-inflammatory properties which are important mechanisms by which many diseases cause pathology. In cancer cell cultures, it has been found to reduce proliferation of tumor cells in urologic cancer and reduce the pro-inflammatory states that are necessary for metastatic conditions (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434502/).CBD interacts with the 5HT1 receptor where many anti-depressants and anxiolytic medications exert their effects, making CBD an effective anxiolytic. It works to stimulate appetite and is commonly used by patients with cancer for anorexia and end-stage cancer pain.

IMG_2405_preview

In conclusion

In summary, cannabidiol and tetrahydrocannabinol are effective medications in treating pain from many chronic illnesses and is not reserved for patients with terminal illness. Despite the reticence of physicians, Congress and even patients, there is overwhelming evidence that cannabidiol and tetrahydrocannabinol are effective in many different diseases, although in some conditions there’s a long way to go from preclinical data to human trials.  It is fairly clear in many disease states, medical marijuana is significantly effective. There is no tolerance and may be an effective treatment for patients with chronic pain. CBD by itself has no euphoric properties and low concentrations of THC do not give intoxicating psychoactive effects. These are 2 alternatives that may provide relief and solution to the growing epidemic of the opioid crisis.

Introduction/Disclaimer

About

https://neurologybuzz.com/

Standard
Epilepsy, pain

Cannabidiol: Is there any scientific evidence? Review of some of the novel mechanisms of action in analgesic, anti-epileptic, anti-inflammatory, anti-tumorigenic and anxiolytic effects 

Virginia Thornley, M.D., General Neurologist and Epileptologist

@VThornleyMD

February 16, 2018

Introduction

Cannabidiol (CBD) is the little known medical component without the euphoria used for medical indications such as analgesic, anti-inflammatory, anti-epileptic and anxiolytic effects. In the pathway for endocannabinoids, cannabinoid exerts its therapeutic effects by binding to the CBD1 receptor found in the brains and the nerves exerting their analgesic effects. CBD does not have the same euphoriant effect as THC its counterpart which is better known to the public with much stigma. CBD will need to be 100 times more potent to have the same euphoria as THC making it relatively safe to give without the intoxicating effects. THC or delta-tetrahydrocannabidiol is the main psychoactive component in the marijuana plant, the one finds in the street drugs which has caused such a stigma shadowing the beneficial effects of the plant. Cannabidiol is also thought to work on the 5HT1 receptor giving its anxiolytic properties. This review seeks to understand some of the laboratory research that study the underlying mechanisms for its beneficial actions.

Cannabidiol works on CBD1 receptor and is thought to have an analgesic and anti-inflammatory role in diseases. In many states, it still outlawed to have in possession but growing clinical evidence shows that it can be used in pain syndromes. In the state of Florida there are 10 conditions recognized that can be treated with CBD. It is most commonly used in pain from stage IV metastatic cancer. Cannabidiol has been found to have anti-inflammatory, anti-tumorigenic, analgesic, anti-epileptic and anxiolytic properties.

Analgesic effects

CB1 receptors are found to be expressed in anterior horn cells. The CB2 receptors possibly reduce pain by acting on the neutrophil accumulation and mast cell degranulation which can reduce pain both of these processes increase inflammatory algesia(1).Analgesia has been demonstrated with cannabinoids in visceral inflammation and pain due to peripheral neuropathies, important areas of therapeutic considerations.

Anti-seizure effects

Some of the vast scientific research for cannabinoid is found in the animal models for epilepsy. Cannabinoids exert effects on CB1 and CB2 receptors in the hippocampus where it has a weak affinity(5). CBD1 receptors affect transmission in the synapses through the voltage-gated calcium and potassium channels. There are studies on the effects of CBD in refractory types of epilepsy such as Dravet’s syndrome one of the SCN1a genetic disorders affecting the sodium channel manifesting as severe myoclonic epilepsy. Mechanisms of CBD include increasing excitation of the inhibitory effect of the hippocampus where seizures are propagated.  At low doses, it helps with autism and impaired cognition.  It may exert its effect by working against GPR55(7), TRPV1 in addition to voltage-gated voltage-gated potassium and sodium channels. Another study supports the role that cannabinoids may play in shifting the inhibition of glutamatergic effects and GABAergic effects in the hippocampus mediated by CB1 receptors. In the rat model, it was suggested that seizures can upset the balance of these glutamate and GABA systems (4). 15 minutes after an induced seizure, there is increased 2-arachidonylycerol which is a CB1 agonist suggesting cannabinoids act as a negative feedback loop for seizures(4). In addition, it was found there are more CB1 receptors in the hippocampi with induced seizures compared to control suggesting plasticity of the brain with a compensatory increase in CB1 receptors in response to increased seizures(4). CB2 receptors are related to the immune system and are limited in the CNS. Cannabinoids affect calcium homeostasis and may provide its neuroprotective effects. Growing evidence shows case series, case reports and anecdotal reports on patients having fewer seizures on cannabidiol. Large case-controlled clinical randomized trials are needed.

Anti-tumor effects

There appears to be increased cancel cell death, reduced viability and reduced numbers of metastatic cells. In one study, it is found to reduce epidermal growth factor-induced multiplication and chemotaxis of cells in breast cancer. In mouse models, it inhibits macrophage recruitment in tumor-related cells.n It can potentially inhibit metastasis and proliferation and may provide a novel therapeutic option in breast cancer(2).

Anxiolytic effects

It works on the 5HT1 receptor by altering effects on this receptor the exact mechanism is unknown accounting for anxiolytic properties(6).

1383715_10151936144383841_1962894181_n

Anti-psychotic effects

CBD may alter the effects of THC and reduce its psychoactive properties (6).

 

Alternative treatment in opioid use

CBD might also work in place of opioids with the growing epidemic of chronic pain and overuse of opioids, CBD may be an alternative analgesic for chronic pain without the effect of tolerance or sedating properties. CBD was found to reduce the reward effects of morphine and does not have the same properties of tolerance. CBD does not have the same euphoria and THC and works on pain(6).

In summary, it is an exciting time for research in the use of cannabinoids. There are innumerable basic science research studies demonstrating the therapeutic effects at the cellular level. Large randomized clinical trials are still needed to gain information in using cannabinoids in humans.

Introduction/Disclaimer

About

https://neurologybuzz.com/

References

1. Rice, AS, et al, “Endocannabinoids and pain: peripheral and spinal analgesia in inflammation and neuropathy, ” Prostaglandins, Leukotrienes and Essential Fatty Acids, 2002, Feb., 66(2-3)246-256.

2. Elbaz, E. et al, ” Modulation of tumor microenvironment and inhibition of EGF/EGFR pathway: novel mechanisms of Cannabidiol on breast cancer,”Molecular Oncology, 2015, Apr., 9(4):906-919.

3. Welty, W.E., et al, “Cannabinoids: the promises and pitfalls,” Epilepsy Currents, 2014, Sep.-Oct., 14(5):250-252.

4. Wallace, MJ, et al, ” The endogenous Cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy, ” The Journal of Pharmacology and Experimental Therapeutics, 2003, Oct., 307(1):129-137.

5. Gaston, T. et. al, “Pharmacology of cannabinoids in the treatment of epilepsy, ” Epilepsy Behavior, 2017, May, 70:313-318.

6. Volkow, Nora, “The biology and potential therapeutic effects of cannabidiol,” National Institute on Drug Abuse Senate Caucus on International Narcotics Control, 2015, June.

7. Kaplan, et.al, “Cannabidiol attenuates seizures and social deficits in a mouse model in Dravet syndrome, “Proceedings of the National Academy of Science, 2017, Oct.

Standard