fibromyalgia

Medical marijuana in fibromyalgia: molecular mechanisms and small randomized controlled trials

Virginia Thornley, M.D., Neurologist, Epileptologist

@VThornleyMD

June 17, 2018

Introduction

Fibromyalgia used to be  a condition denoting excessive pain and was previously questionable as there was no testing that could prove or disprove it. Now, the current thought is that it is attributed to hypersensitivity of the nervous system to pain impulses resulting in multiple points of pain in the body.

Endocannabinoid system in pain modulation

The endocannabinoid system is a major chemical neurotransmitter system that has only come to light as to physiology in the last 20 years. The CB1 receptor is found predominantly in the nervous system on which the endogenous endocannabinoid anandamide exerts its effects. The CB2 receptor is found mostly in the immune system on which 2-Arachidonoylglycerol acts. In the nervous system, cannabinoid receptors are seen in the periaqueductal gray area, ventromedial medulla and dorsal horn of the spinal cord which are areas where pain transmission takes place. This suggests that endocannabinoids play a major role in modulation of pain and can impact pain control through manipulation of this system.

Anandamide and and 2-Arachidonoylglycerol are synthesized on demand. It is released immediately after production. 2-AG is formed from a 2 step process. Anandamide has a low affinity to the TPRV1 receptor (2).

1,2-diacylglycerol (DAG) is  a precursor or 2-AG which is formed by hydrolysis of membrane phosphoinositides. DAG is hydrolyzed by 2-AG hydrolase to form 2-AG. 2-AG may be stimulated by activation of G protein receptor such as glutamate receptors. It activates both CB1 and CB2 receptors. Cannabidiol which is found in the cannabis sativa plant is a natural mimetic of 2-AG. Endogenous 2-AG is found 170 times more than Anandamide in the brain. Exogenous 2-AG suppresses nociceptive stimulus (2). 2-AG activity is potentiated with natural 2-acylglycerols which enhances the effects which does not happen when used alone. This is an entourage effect found in the brain where the combination of substances give a combined resulting effect which does not occur if used alone (2).

Mechanisms in pain modulation

Cannabinoids were found to reduce nociceptive transmission at the level of the pain c-fiber responses in the spinal dorsal horn.

B1F55FBA-970D-4B7D-B96C-BFF117A17DC0

Randomized controlled trial in fibromyalgia

In one study of 40 patients in a randomized controlled clinical trial, nabilone which is a synthetic cannabinoid was given over a 4 week period. Measures that were evaluated included the visual analog scale for primary outcome and for secondary outcome measure, tender points, secondary outcome measure, Fibromyalgia Impact Questionnaire (FIQ) at weeks 2 and 4 were used. There was statistical difference in treated vs. control groups for pain (P value< 0.02), anxiety (P<0.02 and FIQ (P<0.02). There were more side effects for the treated cohort compared tot he placebo controlled group. This study demonstrates that cannabinoids may be an effective treatment for fibromyalgia (1).

In one paper that reviewed 18 randomized controlled clinical trials of cannabinoids in chronic pain syndromes including fibromyalgia, cannabinoids were found to be an effective type of treatment. Despite the short duration of the trials, pain relief was effective and mild to moderate adverse effects were noted. Larger clinical trials are needed (2).

About

Introduction/Disclaimer

https://neurologybuzz.com/

  1. Skrabek, et al, “Nabilone for the treatment of pain in fibromyalgia,” J. Pain, 2008, Feb., (9)2:164:173
  2. Lynch, et al, “Cannabinoids for treatment of chronic non-cancer pain: a systemic review of randomized trials,” Br. J. Pharmacology, 2011, Nov., 72(5):735-744
Standard
autism

Medical marijuana: effects on pediatric patients with autism and the developing brain

Virginia Thornley, M.D., Neurologist, Epileptologist

@VThornleyMD

May 6, 2018

Introduction

Medical cannabis is being more and more commonly used in medical conditions specifically neurological. The CB1 receptor is found predominantly within the nervous system and in a few other organs on a lesser basis. The CB2 receptor is mainly in the immune system and found in other organs to a lesser extent.

Recent arguments have arisen promoting medical cannabis in children particularly in those with autism and attention deficit hyperactivity disorder.  It has already been well-established in patients with epilepsy. However, the effects on the developing brains of children have not yet been well-documented as it is not yet widely used or studied in the pediatric population. There are many animal models but this does not always correspond to translate into similar human findings.

Effect in autism in animal models and clinical studies

A current topic of debate is not only using THC in pediatric patients but those with autism. Autism is part of the pervasive developmental disorder consisting of social inhibition and isolation including poor eye contact, delayed language skills, aggressive behavior and may be characterized as having stereotypies such as flapping of the arms. Self-injury, eating and sleep disorders may occur. The etiology may be related to genetic, neurobiochemical or environmental and the exact cause is unclear.

In one animal model study, mice with induced Dravet syndrome-like symptoms was noted to improve in autistic-like social interactions with the addition of low dose cannabidiol (2) of 10mg/kg. At low doses, the DS mice interacted more with stranger mice. At higher doses, this was not noted. Dravet syndrome is a type of epileptic syndrome affecting the SCN1A gene causing medically refractory seizures combined with autism.  However, this was an animal model. Scientific studies do not necessarily translate into positive human clinical results.

There was one case report of a six-year-old boy with early autism. Dronabinol  (delta-9-THC) was administered at 3.62mg a day and followed for 6 months. Using the ABC scale (aberrant behavior checklist), the patient improved in terms of stereotypies which were less, lethargy was reduced, hyperactivity improved, and inappropriate speech improved (4).

10454352_10152824048348841_3211150018156156082_o.jpg

Endocannabinoid system and mechanisms in relation to autism

There are several lines of thinking regarding the role of the endocannabinoid and autism. It is thought that the endocannabinoid system plays a role in neurological development, but can also be modulated by outside cannabinoids. Another line of thinking is that autism spectrum disorders may be related to disrupted pathways that have been affected by the endocannabinoid pathway (5). In one animal study, it was found that the oxytocin peptide may be responsible for disrupting normal signaling pathways giving rise to autism spectrum disorders. Oxytocin appears to be crucial in mediating social reward which is impaired in autistic patients. Anandamide seems to play a role in the signaling pathways for oxytocin which is responsible for the social reward.   Social reward is aberrant in those with autism and this pathway thought to play a key role in causing its pathogenesis. By increasing anandamide at the CB1 receptor, ASD and social impairment is improved (5).

Effect on a fetus

Tetrahydrocannabinol is lipophilic and crosses the blood-brain barrier. It can get stored in the fatty stores which are likely the reason it may have a long-lasting effect.  Cannabinoids have been found to cross the placenta and affect the fetus. It may result in hyperactivity and impulsivity in babies with cannabinoid exposure in utero.

 

Effect on early cerebral development

It was found that in adolescents who used cannabis, there is a reduction in the IQ by the age of 38. It was found that cannabinoid receptors influence axonal migrations as well as subcortical projections within the cerebrum. This affects synaptic connections during childhood and adolescence(3).

The adolescent brain is still not fully matured and likely still subject to neuronal plasticity and changes. It may be affected by substances. One study showed that the frontal lobe is vulnerable to cannabis in adolescents who used it heavily and that cannabis use may impact working memory. (1)

 

 

10636938_10152824044463841_8538878751618950986_o.jpg

 

During adolescence, when cannabis is initiated it may affect the neuronal circuitry developing in the immature brain. The richest regions in the brain with cannabinoid receptors are the prefrontal cortex, medial temporal lobes, striatum, white matter connections, and cerebellum. When cannabis is introduced during this neurocritically important time of development, these regions can become dysfunctional although some functional studies have shown altered, weakened, strengthened or combination of changes (6).

Some of the most common adverse effects

At high doses in chronic users, it was found to induce anxiety, panic attacks. It can increase blood pressure. However, clinically, it may control seizures

 

In summary

There is a small body of evidence from a scientific standpoint that cannabis may work to help alleviate autism-like symptoms based on the animal models. There is a not enough evidence from a clinical evidence standpoint in human studies to support its use in pediatric patients, with one case report that it helped with impulsivity, reduced lethargy, and inattention. Randomized placebo-controlled clinical trials are needed.

Research has found that cannabinoids may help oxytocin and disrupted signaling pathways that play a role in social reward which is impaired in autism. At present, there is evidence that cannabis may affect neurocognitive development but these are studies in pregnant mothers who used it heavily recreationally and adolescents who used it heavily. It is unclear if there may be a similar impact when used in the pediatric population at a medical dosage and administration as there are not enough studies to expound on this.

About

Introduction/Disclaimer

https://neurologybuzz.com/

Reference

  1. Jager, et al, “Cannabis use and memory brain function in adolescent boys: a cross-sectional multicenter fMRI study,” J. Am. Acad. Child Adolesc. Psychiatry, 2010, Jun., 49(6):561-572.
  2. Kaplan, et al, “Cannabidiol attenuates seizures and social deficits in a mouse model in Dravet syndrome,” Proceedings of the National Academy of Science, 2017, Oct.. 114 (42):11229-11234.
  3. Scott, et al, “Medical marijuana: a review of the science and implications for developmental-behavioral pediatric practice,” J. Dev. Behav. Ped., 2016, Feb., 36 (2):115-123.
  4. Kurz, et al, “Use of dronabinol  (delta-9-THC) in autism: a prospective single-case study with early infantile autistic child,” Cannabinoids, 2010, 5 (4):4-6.
  5. Wei, et al, “Enhancement of anandamide-mediated endocannabinoid signaling corrects autism-related social impairment,” Cannabis Cannabinoid Research, 2016, 1(1):81-89
  6. Kelly, et al, “Distinct effects of childhood ADHD and cannabis use on brain functional architecture in young adults, Neuroimage Clin., 2017, 13:188-200.

 

Standard